.....

April 2023

Initiatives to decarbonate the cloud

The cloud is composed of different services

Are cloud infrastructures as light as this cloud?

Important infrastructures behind cloud services

Qarnot

Important infrastructures behind cloud services

Digital pollution in a few figures

Source: Lean ICT - Towards sobriety - The Shift Project - March 2019

Communication of the hyperscalers

"Switching from on-prem to the cloud will save 90% of your carbon footprint"

Communication of the hyperscalers

"The cloud is carbon neutral"

objectif d'atteindre zéro émission nette de CO₂ d'ici 2040 » D'ici 2030, Microsoft aura une empreinte carbone négative » « En 2007, nous étions la première grande entreprise à s'engager et à atteindre un bilan neutre en carbone »

Carbon footprint = energy consumption x electricity mix – energy double usage + manufacturing + end of life – carbon offset + ...

Carbon footprint =

energy consumption x electricity mix

- energy double usage
- + manufacturing
- + end of life
- carbon offset

+ ...

CPU Utilization and Power Consumption (Source: Blackburn 2008)

utilization and (often) sub-optimal efficiency

Option 2: cloud-based solution

Smaller number of cloud servers with high utilization and efficiency

Increase utilization rate

Evolution of the cooling technology

Traditional cooling

Hot aisle enclosure

Free and evaporative cooling

Evolution of the cooling technology

Direct Liquid Cooling

Immersion cooling

PUE: a key metric for the energy efficiency

PUE : impact de la métrique

DC efficiency gains have flattened out, we need new perspectives

Source: Reported data center PUE figures in global Uptime Institute surveys from 2007 to 2020

UptimeInstitute INTELLIGENCE

Carbon footprint = energy consumption x electricity mix – energy double usage + manufacturing + end of life – carbon offset + ...

Electrical mix

Buying renewables certificates doesn't help reaching Paris agreement targets

Carbon footprint = energy consumption x electricity mix – energy double usage + manufacturing + end of life – carbon offset + ...

Carbon offsetting

Carbon offset is part of the solution but comes with a great deal of uncertainty

Carbon footprint =

energy consumption x electricity mix

- energy double usage
- + manufacturing
- + end of life
- carbon offset
- + ...

Carbon footprint of the cloud

Consider the full Life Cycle Analysis

Carbon footprint of the cloud

Consider the full Life Cycle Analysis

DC initiatives

Microsoft underwater datacenter

Scandinavian Datacenter

Jean Zay supercomputer heating IDRIS CNRS labs

DC initiatives

Microsoft underwater datacenter Pure marketing

What about maintenance?

Scandinavian Datacenter Better

Reduced cooling Better electricity mix? Jean Zay supercomputer heating IDRIS CNRS labs Much better

Reduce used energy Not reduced cooling

Sustainability is not just about carbon

Environmental footprint = carbon footprint + water usage + abiotic depletion + ...

Water usage

Abiotic depletion

Installing our servers where the heat is needed

A specific hardware solution

Liquid to Liquid Scalable to Data Center Direct to Chip (D2C)

Computing Clients who need computing power **Building** Clients who need heat

-

Computing boiler

Questions ?

Website: <u>https://qarnot.com/fr</u>

Blog: <u>https://blog.qarnot.com/</u>

Jobs or internships: <u>https://qarnot.com/fr/rejoignez-nous</u> or email <u>jobs@qarnot.com</u> or <u>remi@qarnot.com</u>

