
Introduction to Coccinelle and its Usage in the Linux Kernel

Julia Lawall (Inria/LIP6)
May 24, 2018

1

What is the Linux kernel?

An open-source operating system, known for:

• Reliability:
13:27:36 up 187 days, 1:15, 4 users, load average: ...

• Flexibility
– 86% of smartphones run Android (2017)
– 92% of Amazon EC2 instances run Linux (2016)
– 100% of the top 500 supercomputers run Linux (2017)

• Low cost per unit

2

Some history

First release in 1991.

• v1.0 in 1994: 121 KLOC, v2.0 in 1996: 500 KLOC

Recent evolution:

0
5
10
15

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

M
ill
io
n
LO
C

0
500

1,000
1,500
2,000

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18co

nt
rib
ut
or
s
1 10 50 100 500 1000 500010000

101
102
103
104

contributions

co
nt
rib
ut
or
s

3

Challenges

Critical code:

• Requires both correctness and performance.

Large code base.

Large, diverse developer base.

Need for automation and scalability:

• How to impose API improvements on the entire kernel?

• How to ensure that a bug found in one place is fixed everywhere?

4

Example

Evolution: A new function: kzalloc

=⇒ Collateral evolution: Merge kmalloc and memset into kzalloc

fh = kmalloc(sizeof(struct zoran_fh), GFP_KERNEL);
if (!fh) {
dprintk(1,
KERN_ERR
"%s: zoran_open(): allocation of zoran_fh failed\n",
ZR_DEVNAME(zr));

return -ENOMEM;
}
memset(fh, 0, sizeof(struct zoran_fh));

5

Example

Evolution: A new function: kzalloc

=⇒ Collateral evolution: Merge kmalloc and memset into kzalloc

fh = kzalloc(sizeof(struct zoran_fh), GFP_KERNEL);
if (!fh) {
dprintk(1,
KERN_ERR
"%s: zoran_open(): allocation of zoran_fh failed\n",
ZR_DEVNAME(zr));

return -ENOMEM;
}
memset(fh, 0, sizeof(struct zoran_fh));

6

Example

Evolution: A new function: kzalloc

=⇒ Collateral evolution: Merge kmalloc and memset into kzalloc

fh = kzalloc(sizeof(struct zoran_fh), GFP_KERNEL);
if (!fh) {
dprintk(1,
KERN_ERR
"%s: zoran_open(): allocation of zoran_fh failed\n",
ZR_DEVNAME(zr));

return -ENOMEM;
}
memset(fh, 0, sizeof(struct zoran_fh));

Originally, hundreds of kmalloc and memset calls 7

Example

Bug: Reference count mismanagement

• for_each iterator increments the reference count of the current element
and decrements the reference count of the previous one.

• break; escapes, skipping the decrement.

• =⇒ A memory leak.

/* Initialise all packet dmas */
for_each_child_of_node(node, child) {
ret = dma_init(node, child);
if (ret) {
dev_err(&pdev->dev, "init failed with %d\n", ret);
break;

}
}

6 instances in linux-next (May 4, 2018) 8

Coccinelle to the rescue!

9

What is Coccinelle?

• Pattern-based language for matching and transforming C code

• Under development since 2005. Open source since 2008.

• Allows code changes to be expressed using patch-like code patterns
(semantic patches).

10

Semantic patches

• Like patches, but independent of irrelevant details (line numbers, spacing,
variable names, etc.)

• Derived from code, with abstraction.

• Goal: fit with the existing habits of the Linux programmer.

11

Semantic patch example

@@
expression x,E1,E2;
@@
- x = kmalloc(E1,E2);
+ x = kzalloc(E1,E2);
...

- memset(x, 0, E1);

12

Creating a semantic patch: kmalloc→ kzalloc

Start with an example

fh = kmalloc(sizeof(struct zoran_fh), GFP_KERNEL);
if (!fh) {
dprintk(1,
KERN_ERR
"%s: zoran_open(): allocation of zoran_fh failed\n",
ZR_DEVNAME(zr));

return -ENOMEM;
}
memset(fh, 0, sizeof(struct zoran_fh));

13

Creating a semantic patch: kmalloc→ kzalloc

Eliminate irrelevant code

fh = kmalloc(sizeof(struct zoran_fh), GFP_KERNEL);
if (!fh) {
dprintk(1,
KERN_ERR

... "%s: zoran_open() - allocation of zoran_fh failed\n",
ZR_DEVNAME(zr));

return -ENOMEM;
}
memset(fh, 0, sizeof(struct zoran_fh));

14

Creating a semantic patch: kmalloc→ kzalloc

Describe transformations

@@
expression x;
expression E1,E2,E3;
identifier f;
@@

- fh = kmalloc(sizeof(struct zoran_fh), GFP_KERNEL);
+ fh = kzalloc(sizeof(struct zoran_fh), GFP_KERNEL);
...

- memset(fh, 0, sizeof(struct zoran_fh));

15

Creating a semantic patch: kmalloc→ kzalloc

Abstract over subterms

@@
expression x;
expression E1,E2;E3;
identifier f;
@@

- x = kmalloc(E1,E2);
+ x = kzalloc(E1,E2);
...

- memset(x, 0, E1);

16

Creating a semantic patch: kmalloc→ kzalloc

Refinement

@@
expression x;
expression E1,E2,E3;
identifier f;
@@

- x = kmalloc(E1,E2);
+ x = kzalloc(E1,E2);
... when != (<+...x...+>) = E3

when != f(...,x,...)
- memset(x, 0, E1);

17

Results

• Correctly updates 14 occurrences
– 5 false positives, could be eliminated by more “when” tests

• Other opportunities:
– acpi_os_allocate → acpi_os_allocate_zeroed
– dma_pool_alloc → dma_pool_zalloc
– dma_alloc_coherent → dma_zalloc_coherent
– kmem_cache_alloc → kmem_cache_zalloc
– pci_alloc_consistent → pci_zalloc_consistent
– vmalloc → vzalloc
– vmalloc_node → vzalloc_node

18

Results

• Correctly updates 14 occurrences
– 5 false positives, could be eliminated by more “when” tests

• Other opportunities:
– acpi_os_allocate → acpi_os_allocate_zeroed
– dma_pool_alloc → dma_pool_zalloc
– dma_alloc_coherent → dma_zalloc_coherent
– kmem_cache_alloc → kmem_cache_zalloc
– pci_alloc_consistent → pci_zalloc_consistent
– vmalloc → vzalloc
– vmalloc_node → vzalloc_node

18

Semantic patch example

@@
expression root,e;
local idexpression child;
iterator name for_each_child_of_node;
@@

for_each_child_of_node(root, child) {
... when != of_node_put(child)

when != e = child
+ of_node_put(child);
? break;

...
}
... when != child

19

How does it work?

C codeSemantic patch

CTL formula Control Flow Graph

AX(A[(ϕ1 ∨ ϕ2)Uϕ3] ∧ . . .)

Model checking algorithm
• Identification of the nodes to be modified

Modification of the identified code 20

Processing of C code

Goal: Support processing real Linux source code.

Dedicated C parser, keeping space and comment information.

Limited, user-controlled inclusion of header files, to reduce runtime.

No preprocessing.

• Code manipulated in terms of what the developer sees in the code base.
• Avoids the need for most header files.

Intraprocedural CFG.

21

Processing of C code

Goal: Support processing real Linux source code.

Dedicated C parser, keeping space and comment information.

Limited, user-controlled inclusion of header files, to reduce runtime.

No preprocessing.

• Code manipulated in terms of what the developer sees in the code base.
• Avoids the need for most header files.

Intraprocedural CFG.

21

Processing of C code

Goal: Support processing real Linux source code.

Dedicated C parser, keeping space and comment information.

Limited, user-controlled inclusion of header files, to reduce runtime.

No preprocessing.

• Code manipulated in terms of what the developer sees in the code base.
• Avoids the need for most header files.

Intraprocedural CFG.

21

Processing of C code

Goal: Support processing real Linux source code.

Dedicated C parser, keeping space and comment information.

Limited, user-controlled inclusion of header files, to reduce runtime.

No preprocessing.

• Code manipulated in terms of what the developer sees in the code base.
• Avoids the need for most header files.

Intraprocedural CFG.

21

Processing of C code

Goal: Support processing real Linux source code.

Dedicated C parser, keeping space and comment information.

Limited, user-controlled inclusion of header files, to reduce runtime.

No preprocessing.

• Code manipulated in terms of what the developer sees in the code base.
• Avoids the need for most header files.

Intraprocedural CFG.

21

Processing of Semantic patches

Goal: Allow specifying changes at all code levels.

• Concise and readable.

Support most of C, with few meta-level extensions

• …, when, etc.

Isomorphisms, to reduce semantic patch size

• X == NULL => !X

Implementation via translation to CTL

• Allows ∀ and ∃ quantification over paths.
• ∀ and ∃ can be mixed in a single rule.

22

Processing of Semantic patches

Goal: Allow specifying changes at all code levels.

• Concise and readable.

Support most of C, with few meta-level extensions

• …, when, etc.

Isomorphisms, to reduce semantic patch size

• X == NULL => !X

Implementation via translation to CTL

• Allows ∀ and ∃ quantification over paths.
• ∀ and ∃ can be mixed in a single rule.

22

Processing of Semantic patches

Goal: Allow specifying changes at all code levels.

• Concise and readable.

Support most of C, with few meta-level extensions

• …, when, etc.

Isomorphisms, to reduce semantic patch size

• X == NULL => !X

Implementation via translation to CTL

• Allows ∀ and ∃ quantification over paths.
• ∀ and ∃ can be mixed in a single rule.

22

Processing of Semantic patches

Goal: Allow specifying changes at all code levels.

• Concise and readable.

Support most of C, with few meta-level extensions

• …, when, etc.

Isomorphisms, to reduce semantic patch size

• X == NULL => !X

Implementation via translation to CTL

• Allows ∀ and ∃ quantification over paths.
• ∀ and ∃ can be mixed in a single rule.

22

Evaluation

First experiment (EuroSys 2008)

• Semantic patches for over 60 collateral evolutions.
• Applied to over 5800 Linux files from various versions, with a success rate of
100% on 93% of the files.

• Required a forgiving parser for all of C
• Required fully source-to-source transformation.

Second experiment: the Linux kernel

• Parse errors - missing ; etc.
• kmalloc/memset: 136 files.
• 0 -> NULL for pointers, etc.
• Made releases, fixed bugs, filled in features as needed.

Might other people use Coccinelle?

23

Evaluation

First experiment (EuroSys 2008)

• Semantic patches for over 60 collateral evolutions.
• Applied to over 5800 Linux files from various versions, with a success rate of
100% on 93% of the files.

• Required a forgiving parser for all of C
• Required fully source-to-source transformation.

Second experiment: the Linux kernel

• Parse errors - missing ; etc.
• kmalloc/memset: 136 files.
• 0 -> NULL for pointers, etc.
• Made releases, fixed bugs, filled in features as needed.

Might other people use Coccinelle?

23

Evaluation

First experiment (EuroSys 2008)

• Semantic patches for over 60 collateral evolutions.
• Applied to over 5800 Linux files from various versions, with a success rate of
100% on 93% of the files.

• Required a forgiving parser for all of C
• Required fully source-to-source transformation.

Second experiment: the Linux kernel

• Parse errors - missing ; etc.
• kmalloc/memset: 136 files.
• 0 -> NULL for pointers, etc.

• Made releases, fixed bugs, filled in features as needed.

Might other people use Coccinelle?

23

Evaluation

First experiment (EuroSys 2008)

• Semantic patches for over 60 collateral evolutions.
• Applied to over 5800 Linux files from various versions, with a success rate of
100% on 93% of the files.

• Required a forgiving parser for all of C
• Required fully source-to-source transformation.

Second experiment: the Linux kernel

• Parse errors - missing ; etc.
• kmalloc/memset: 136 files.
• 0 -> NULL for pointers, etc.
• Made releases, fixed bugs, filled in features as needed.

Might other people use Coccinelle?

23

Evaluation

First experiment (EuroSys 2008)

• Semantic patches for over 60 collateral evolutions.
• Applied to over 5800 Linux files from various versions, with a success rate of
100% on 93% of the files.

• Required a forgiving parser for all of C
• Required fully source-to-source transformation.

Second experiment: the Linux kernel

• Parse errors - missing ; etc.
• kmalloc/memset: 136 files.
• 0 -> NULL for pointers, etc.
• Made releases, fixed bugs, filled in features as needed.

Might other people use Coccinelle? 23

Engagement with the Linux kernel community

Submission of over 2000 patches to the Linux kernel

Interaction with developers:
• Talks at the Kernel Summit, Linuxcon, FOSDEM, etc.

• Workshops for Linux developers and local industry.

• Quick response on mailing list (Inria engineer support).

• Hosted Luis Rodriguez, Greg Kroah Hartman (2 mo. each)

• MOU with the Linux Foundation

Supervision of interns, supported in part by the Linux Foundation.

Kernel security-related project funded by the Core Infrastructure Initiative.

24

Impact: Patches in the Linux kernel

Over 5500 Linux kernel commits up to Linux v4.15 (Jan 2018).

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

0

200

400

nu
m
be
r

Coccinelle developers
Outreachy interns
Kernel maintainers
Dedicated user

0-day
Others

25

Impact: Cleanup vs. bug fix changes among maintainer patches using Coccinelle

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

0
100
200
300

nu
m
be
r Cleanups

Bug fixes

26

Impact: Semantic patches in the Linux kernel

59 semantic patches in Linux v4.15 (Jan 2018).

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

0

10

20
nu
m
be
r

Coccinelle developers
Outreachy interns
Maintainers/Others

27

Impact: 0-day reports mentioning Coccinelle per year

2013 2014 2015 2016 2017
0

200

400

#
wi
th
pa
tc
he
s

api free iterators locks null tests misc

2013 2014 2015 2016 2017
0

100

200

#
wi
th
m
es
sa
ge
on
ly

28

Impact: Comments from users

29

Impact: Comments from users

Date: Wed, 20 May 2015 20:35:42 +0200 (CEST)
From: Thomas Gleixner <tglx@linutronix.de>

I think you are doing that conversion wrong. You should first
change all handlers which use the irq argument to:

handler(unsigned __irq, *desc)
and add the local variable

unsigned irq;
or

unsigned irq = irq_desc_get_irq(desc);
for those.
...
And you should do that with scripting aid. Coccinelle is the
proper tool for this.
...
It's really important to do that with scripts. It seems you
try to do it via compile testing. But that will fail as you
CANNOT execute all possible config combinations.

30

Lessons learned

• Tools must be visible to the target community.

• Tools must be easy to install.

• Tools must be easy to use, following the habits of the target community.

• Tools must be robust.

• Support must be available to tool users.

31

Current status

• Used in over 5500 Linux kernel patches
– Packaged for Debian, Ubuntu, Gentoo, FreeBSD, etc.
– Also used by wine, systemd, qemu, riot, etc.
– Some support for C++

• 59 semantic patches in the Linux kernel
– Integrated with the Linux kernel 0-day build testing service

32

Other activities, inspired by the results of Coccinelle

Diagnosys [ASE 2012]: Plugging of Linux kernel safety holes
Best paper.

Hector [DSN 2013]: Detection of missing resource release bugs.
Carter award paper.

JMake [DSN 2017]: Feedback on compilation status in the presence of
configurability.

Prequel [USENIX ATC 2017]: Pattern-based commit query language

ITrans [ANR PRCI] Driver porting by inference of semantic patches from examples

33

How to get involved?

Internships:

• GSoC (for students)
• Outreachy (for women and some other underrepresented groups)
• With the Coccinelle team at LIP6

On your own:

• Read git logs, mailing lists (lkml.org, lwn.net, kernel-janitors).
• Run tools (make coccicheck, checkpatch) on drivers/staging code.
• Look for underused API functions.
• Read all the code in a subsystem and find inconsistencies

Read Documentation/SubmittingPatches!

34

How to get involved?

Internships:

• GSoC (for students)
• Outreachy (for women and some other underrepresented groups)
• With the Coccinelle team at LIP6

On your own:

• Read git logs, mailing lists (lkml.org, lwn.net, kernel-janitors).
• Run tools (make coccicheck, checkpatch) on drivers/staging code.
• Look for underused API functions.
• Read all the code in a subsystem and find inconsistencies

Read Documentation/SubmittingPatches!
34

Conclusion

• Targeting a specific problem of a specific community makes it possible to
have an impact.

• Software development tools fit well with the distributed nature of open
source development.

• Feedback from the user community motivates further research.

• Current work: Automatic inference of transformation rules to automate driver
backporting and forwardporting

http://coccinelle.lip6.fr/

35

